Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem
نویسندگان
چکیده
We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic MultiObjective Optimization Problem (SMOP) whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation method (SAA-N, where N is the sample size) in order to approach this problem. We prove that the Hausdorff-Pompeiu distance between the SAA-N weakly Pareto sets and the true weakly Pareto set converges to zero almost surely as N goes to infinity, assuming that all the objectives of our (SMOP) are strictly convex. Then we show that every cluster point of any sequence of SAA-N optimal solutions (N=1,2,. . . ) is almost surely a true optimal solution. To handle also the nonconvex case, we assume that the real objective to be minimized over the Pareto set depends on the expectations of the objectives of the (SMOP), i.e. we optimize over the outcome space of the (SMOP). Then, whithout any convexity hypothesis, we obtain the same type of results for the Pareto sets in the outcome spaces. Thus we show that the sequence of SAA-N optimal values (N=1,2 ...) converges almost surely to the true optimal value.
منابع مشابه
Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملOptimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case
Abstract Our paper consists of two main parts. In the first one, we deal with the deterministic problem of minimizing a real valued function f over the Pareto set associated with a deterministic convex bi-objective optimization problem (BOP), in the particular case where f depends on the objectives of (BOP), i.e. we optimize over the Pareto set in the Outcome space. In general, the optimal valu...
متن کاملA Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms
Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...
متن کاملAN EXTENSION TO STOCHASTIC TIME-COST TRADE-OFF PROBLEM OPTIMIZATION WITH DISCOUNTED CASH FLOW
In this paper, an efficient multi-objective model is proposed to solve time-cost trade off problem considering cash flows. The proposed multi-objective meta-heuristic is based on Ant colony optimization and is called Non Dominated Archiving Ant Colony Optimization (NAACO). The significant feature of this work is consideration of uncertainties in time, cost and more importantly interest rate. A ...
متن کاملUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 162 شماره
صفحات -
تاریخ انتشار 2014